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A B S T R A C T  

Kalai has conjectured that  a simplicial complex can be partitioned into 
Boolean algebras at least as roughly as a shifting-preserving collapse se- 

quence of its algebraically shifted complex. In particular, then, a simpli- 
cial complex could (conjecturally) be partitioned into Boolean intervals 
whose sizes are indexed by its itcrated Betti numbers, a generalization 
of ordinary homology Betti numbers. This would imply a long-standing 

conjecture made (separately) by Garsia and Stanley concerning partitions 
of Cohen-Macaulay complexes into Boolean intervals. 

We prove a relaxation of Kalai's conjecture, showing that  a simplicial 
complex can be partitioned into recursively defined spanning trees of 
Boolean intervals indexed by its iterated Betti numbers. 
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1. I n t r o d u c t i o n  

Iterated homology generalizes ordinary homology, and is related to algebraic 

shifting, (nonpure) shelling, and depth (see [DR] and Definition 2.3). A simplicial 

complex F of dimension d - 1 has r th iterated homology groups for each r = 

0 , . . . ,  d. When r = 0, this corresponds to ordinary homology. If F is a cone over 

F r, then when r = 1, we get the homology of F r. The vector space dimensions of 

the iterated homology groups are the iterated Betti numbers. We will show how 

the iterated Betti numbers of a simplicial complex index a particular partition 

of the complex. 

Algebraic shifting (see Definition 4.8) is a procedure that transforms a simpli- 

cial complex F into a new complex A(F) which is shifted, and hence combinatori- 

ally simpler, yet has many of the same combinatorial, algebraic, and topological 

properties as the original complex. Algebraic shifting was used, for example, by 

Bjhrner and Kalai [BK] to characterize the f-vectors of simplicial complexes with 

given Betti numbers. For more recent interpretations of algebraic shifting as a 

special case of an exterior algebra analogue of generic initial ideals, see [AH] and 

the references therein. 

A shifting-preserving collapse sequence (see Definition 4.3) is a sequence of 

deletions of Boolean intervals from a simplicial complex, leaving a shifted sim- 

plicial complex at each step. The Boolean intervals removed at each step thus 

partition the complex. Kalai has conjectured that a simplicial complex F can be 

partitioned into Boolean intervals at least as roughly as the partition correspond- 

ing to a shifting-preserving collapse sequence of its algebraically shifted complex 

CONJECTURE 1.1 (Kalai [Ka, Conjecture 7]): Let F be a simplicial complex and 
let A(F) t = Ui= 1[ P~, F~] be the representation of the algebraically shifted complex 

A(F) as a union of intervals given by a shifting-preserving collapse ofA(F).  Then 

there is a decomposition ofF into disjoint intervals of the form F = ~=1 [A~, Bi] 

such that dim A~ = dim R~ and dim B~ = dim Fi. 

For instance, it is a basic result [BK] about algebraic shifting that if F is 

acyclic (has only trivial reduced homology), then A(F) is a cone over a shifted 

subcomplex A', so A(F) = I*A',  where 1 is a particular vertex of A(F) not in A', 

and * denotes topological join (so A(F) = A'U { f U  {1}: f �9 A'}). It is not hard 

to show that,  in this case, A(F) has a shifting-preserving collapse sequence of rank 

1 Boolean intervals corresponding to the partition A(r) = UReA'[F, F U {1}]. 

Conjecture 1.1 would then imply that any acyclic simplicial complex can be 

partitioned into rank 1 Boolean intervals. Stanley [St2] has shown that all acyclic 
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simplicial complexes do have such a partition into rank 1 Boolean intervals. 

Even when F is an arbitrary (not necessarily acyclic) simplicial complex, A(F) 

is at least a near-cone (1 * A') U B, where the number of k-dimensional faces in 
B equals the k-dimensional Betti number of F (see [BK] for details). Again, it is 

not hard to show that A(F) therefore has a shifting-preserving collapse sequence 

of rank 0 Boolean intervals, each consisting of one of the faces in B, and rank 1 

Boolean intervals of the form [F,F U {1}] as before. Conjecture 1.1 would then 

imply that any simplicial complex can be partitioned into rank 0 and rank 1 

Boolean intervals, with the rank 0 intervals indexed by the Betti numbers of the 

complex. All simplicial complexes do have such a partition into rank 0 and rank 

1 Boolean intervals [Du]. 
We will show in Corollary 4.9 that A(F) has a canonical shifting-preserving 

collapse sequence into even larger intervals, indexed by the iterated Betti num- 

bers of F. Kalai's conjecture would thus imply that a simplicial complex can be 
partitioned into Boolean intervals indexed by its iterated Betti numbers (Corol- 

lary 4.10). More precisely: 

CONJECTURE 1.2: Let F be a simplicial complex. Then there is a decom- 

position of F into disjoint intervals of the form F = U~=I[A~,Bi] such that 

#{i: dimAi -- k - r, dimBi -- k} = /~k[r](F), where /3k[r](F) denotes the 

rth iterated (k-dimensional) Betti number of F. 

This conjecture would itself be a significant result, as it would imply a long- 

standing conjecture due (separately) to Garsia [Ga] and Stanley [Stl] that a 

Cohen-Macaulay simplicial complex can be partitioned into Boolean intervals, 

whose tops are facets (see Theorem 5.3). 
We prove, in Corollary 3.5, a relaxation of Conjecture 1.2. lnstead of Boolean 

intervals, we partition the complex into "Boolean trees" (Definition 3.3), recur- 

sively defined spanning trees of Boolean intervals, indexed by the iterated Betti 

numbers. The main tool is Theorem 3.2, a decomposition of the complex gener- 

alizing the one in [Du]. 
Although the motivation for these results depends upon algebraic shifting and 

how Conjecture 1.1 implies Conjecture 1.2, we do not need algebraic shifting or 

either conjecture to prove our main results. We therefore postpone the definitions 

of shifted complex, shifting-preserving collapse sequence, and algebraic shifting, 

and the proof that Conjecture 1.1 implies Conjecture 1.2, until Section 4: after 

the proofs of Theorem 3.2 and Corollary 3.5. 

In Section 5, we apply Corollary 3.5 to prove a relaxation of the Garsia-Stanley 

conjecture, that a Cohen-Macaulay simplicial complex can be partitioned into 
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Boolean trees, whose tops are facets (Theorem 5.4). 

2. I t e r a t e d  h o m o l o g y  

Let I, be a finite (abstract) simplicial complex. We allow the possibility that F is 

the empty simplicial complex 0 consisting of no faces, or the simplicial complex 

(0} consisting of just the empty face, but we do distinguish between these two 

cases. The d i m e n s i o n  of F E I, is dim F = IFI - 1, and the d i m e n s i o n  of I, is 

dim F = max{dim F: F E F}. The maximal faces of I, are called facets,  and I, is 

p u r e  if all the facets have the same dimension. Let I'k denote the set of k-faces 

(i.e., k-dimensional faces) of I,. The f - v e c t o r  of I, is the sequence (f0 . . . .  , fd-1), 
where fk = #Fk and d -  1 = dim(i,). The same notion of fk(i') and the f-vector 

will apply to every finite collection of sets. 

Fix a field K throughout the rest of the paper. We call r~ (F) = dimK/:P (F; K) 

the i t h  r e d u c e d  B e t t i  n u m b e r  of F with respect to K,  where/:/~(F; K) is the 

ith reduced cohomology group with respect to i. The B e t t i  sequence  of I, is 

r ( i ' )  = (rio,-.. , rd-1).  Recall that over a field dimK/:/i(i,; K) = dimK/-I~(i,; K),  

so that the Betti sequence measures reduced homology as well as reduced coho- 

mology of I,. 

Definition 2.1: Let I" be a ( d -  1)-dimensional simplicial complex with vertices 

V = { e l , . . . ,  en} linearly ordered el < -'" < e,,. Let A(KV) denote the exterior 
algebra of the vector space K V ;  it has a K-vector space basis consisting of all the 

monomials es := ei~ A . . .  A e~ k, where S = {ei, < ".. < e~} C V (and e 0 = 1). 

Note that A(KV) ,* k = (~k=O A ( g Y )  is a graded K-algebra, and that Ak(KV) 

has basis (es: ISI = k}. 
Let (Ir)k be the subspace of Ak+t(KV) generated by {es: ISt = k + l ,  S r I,}. 

d-1  Then l r  := (~k=_l(Ir)k  is the homogeneous graded ideal of A(KV) generated 

by {es: S • I,}. Let 

Ck(F) := A k + l ( g Y ) / ( I r ) k .  

Then the graded quotient algebra 

d - I  

All,] := ( ~  ck(r)  = A(KV)/Ir 
k - - 1  

is called the ex t e r io r  face r ing of I" (over K). 

The exterior face ring is just the exterior algebra analogue of the Stanley- 

Reisner face ring of a simplicial complex (e.g., [St3]). For x E K V ,  let ~ denote 
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the image of x in A[F]. The set of all f a c e - m o n o m i a l s  {es: S �9 F} is a K-vector 

space basis for A[I'], so /k ( r )  = dimK(Ck(r)).  
We can use the exterior face ring to compute cohomology. If f = ale1 + �9 .. + 

c~nen, then 5f: A[F] -~ A[F] defined by (if(x) = l A x  is a w e i g h t e d  c o b o u n d a r y  

operator, so-called because 

n 

i=I i~S 
su{,}er 

Setting every ai -- 1 gives the usual coboundary operator. Ordinary Betti 

numbers may be computed using weighted coboundary operators as follows: 

/3k_1(F) = dimK(ker( if)k_l /( im(if)k_l ,  if f = ale1 + . . .  + a,~e,~ and every 

ai is non-zero [BK, pp. 289-290]. 

De~nition 2.2: Let { f l , , . . , f n }  be a "generic" basis of K V ,  i.e., fi  = 

~jn= 1 (~ijej, where the a , i ' s  are n 2 transcendentals, algebraically independent 

over K.  The gene r i c  c o b o u n d a r y  o p e r a t o r s  of F, (ii: A[F] -+ Air], are de- 

fined by 

(i~y = ],  ^ y 

for 1 < i < n. Furthermore, let (i(o) = id and, for r _> 1, (i(r) = ( i t " "  (il. 

Generic coboundaries were introduced by Kalai [Ka], though we are here using 

the version in [DR]. Note that  (ii~jY = -(ij~iY, and so ~(0(ii+lY = -t-(ii+l(i(0Y. 

Detinition 2.3: [DR, Section 4]. If F is a simplicial complex and 0 < r < k + 1 _< 

d, let 
Ck[r](F) = (i(r)(Ck-r(r)), 

zk[~](r) = {x �9 c k H ( r ) :  ~r+ix = 0}, 

Bk[r](r) = { (i~+1 (Ck-l[r](r))  if r < k + 1 
0 i f r = k + l  ' 

Hk[~](r) = Zk[~](r)/  Bk[r](r). 

The Hk[r](F) 's are called the r t h  i t e r a t e d  c o h o m o l o g y  g r o u p s  of r .  The r t h  

i t e r a t e d  B e t t i  n u m b e r s  are defined by 

Zk[r](r) = dim Hk[rl(r). 

The r = 0 case is just ordinary reduced cohomology. 

For further details about iterated homology see [DR]. 
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A B e t t i  se t  B of a simplicial complex F is a set of faces that "count" the 

reduced Betti numbers of F; i.e., f k (B)  = ~k(F) for all k. We extend this 

concept to iterated homology. 

Definition 2.4: A set B of faces of a simplicial complex F is an r - B e t t i  se t  of 

F if f k - r ( B )  =/~k[r](F) for all i. 

Note that  a 0-Betti set is just a Betti set. 

3. D e c o m p o s i t i o n s  

In this section, we prove the existence of a key decomposition (Theorem 3.2), 

and then easily derive our main result (Corollary 3.5). For a given set A, we will 

let/gA := {/ga: a E A} if/9 is a function whose domain contains A, and we will let 

K A  denote the K-vector space with basis A. 

The following lemma generalizes [Du, Lemma 3.1]. 

LEMMA 3.1: Let G be a directed graph on the n-element vertex set X.  Let 

O: K X  ~ V be an injective linear transformation into some K-vector space V. 

Suppose that there is a linear transformation r K(OX) ~ K(OX) satisfying the 

two properties: 

1. I f  x E X ,  then 

(1) r E spanr{/gy: y E X,  (x ,y)  is an edge of~};  

and 

2. imr  C_ kerr 

Further suppose Z and Y are subsets of X ,  such that: 

3. (b(OZ) is a basis o f i m r  and 

4. OY is a basis of K( /gX) / imr  

Then there is a matching between Z and W -- X - Y in G. 

Proof'. Since r is a basis of imr it follows that dim(ira0) = IOZI. Also 

[/gY[ = [OX[- dim(imr so dim(imr = [/gXI- 10Y]. By injectivity of 0 then, 

[Z I = [/gZ] = dim(imr = [OX[- IOYI = I X [ -  IYI = [WI. 

By the Marriage Theorem (e.g., [Ry, Ch. 5, Thin. 1.1]), it suffices to show that 

for any Z' C_ Z with, say, I z ' l  = &, there are at least k vertices wl . . . .  , wk E W 

such that for each 1 < i < k there is a z E Z' with (z, wi) an edge of •. Suppose 

not. Let Z' = {zx,. . . ,Zk}. Then r162 are linearly dependent in 
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K ( O X ) / K ( O Y ) ,  since they are all in the span of fewer than  k vectors  of 8W = 

OX - OY. Thus  there is a linear combinat ion  of r  �9 r in K(OY),  say 

alr + . . "  + akr = Or, 

where v E K Y  and ai E K,  not all ai = 0. Moreover,  

(2) a l r  + . . . +  akr = r + . . . +  akOzk) = OV E imr  

Since 0Y is a basis of K ( O X ) / i m r  and Ov E i m r  we have tha t  0v = 0. Therefore  

a l r  + " -  + akr = 0. Since r  is a basis of i m r  it follows tha t  

al . . . . .  ak = 0, a contradict ion.  I 

THEOREM 3.2: Let F be a ( d -  1)-dimensional simplicial complex. Then there 

exists a chain of subcomplexes 

(3) 0 = r (d+l) c . . .  c r (~) c r (~ -1 )  c_ . . .  c r ( ' )  c_ r (0) = r ,  

where 

and bijections 

r (*) = F (*+~) t:) B (r) u fl(r+l) (0 < r < d), 

(4) r/(~): r (r) -+ fl(*) (1 < r < d), 

such that, for each r,  

1. r(~+') and F (*+1) U B (r) are subcomplexes ofF(r); 

2. B (r) is an r-Bett i  set; and 

3. for any  F E F (r), we have F C_ r/(r)(F) and [r/(r)(F) - F[ = 1. 

Proo~ The  proof  depends upon  the generic coboundary  opera tors  (Defini- 

t ion 2.2), and proceeds in several steps. Throughou t  the proof, we adopt  the 

convention tha t  for any subset  F '  C_ F, we denote by K I "  the K - s p a n  within A[F] 

of  the images of {es: S E F~}. 

STEP 1: Induct ively define F (H, 0 < r < d +  1, so tha t  

(5) 5(,)F (*) is a basis for ~(~)Kr = KS(r)F. 

Let  F (~ = F. I t  is clear tha t  (5) holds for r = 0. Now assume tha t  (5) holds 

for r - 1; we mus t  find F (r) satisfying (5). Let 

I~ = ~(~)~r  = ~ ( ~ ( ~ _ , K r ) ,  
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a K-vector space. By inductive assumption, I~ is generated by 

6r (6(r_DF(r-D) = (~(r)F (r-l). 

Let Mr be the "lexicographically least" basis of It; i.e., if G E F (r-l) then 

6(r)x G r Mr if and only if 

(6) (f(r) xG = Z a~ (f(r) X F~ , 

where ai E K, Fi <L G, and Fi E F (r-l). Let 

F (~) = {F E F(r~1): 6(r) x F E Mr}.  

Then it is clear that F (r) satisfies (5), completing the induction. 

Note that 6(d+1) is the zero map, since its image would have to be at least d- 

dimensional; therefore (5) guarantees F (d+l) = 0. (A similar dimension argument 

shows that F (d) = {0}.) It is also easy to see that F (r) C_ F(r-1), so (3) is satisfied. 

STEP 2: Define B (r), 0 < r '~ d, so that 

(7) ~(r) (r(~+')u B (r)) is a basis for ~(r)Kr(~)/6(r+l)Kr (~). 

Let 
Hr = 6(r)KF(r) /6(r+I)KF (~) = K6(r)F(r) /K6( ,+I)F (r). 

Note that the definition of F (r) ensures (f(r)KF = 6(~)KF (~), so 

= 6(r+I)KF (~), 

and thus 
Hr = K6(r)F(r)/K6(r+I)F. 

Let Lr be the "lexicographically least" basis of Hr; i.e., if G E F (r) then 6(r)x a 

Lr if and only if 

(8) ~(r)x a = ~ a~ ~(r)x F' + ~(r+l)y, 

where a, E K, F~ <L G, F~ E F (~), and y E KF. 

We now claim that 

F (r+l) C_ {F E F(r): 5(r)x f E Lr}.  
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Assume that  G E F (~) but 5(~)x c ~ L~. By the definition of L~ then, G satis- 

fies (8). Apply 5r+1 to both sides of (8). Since 5~+15(r+1) = 5~+125(~) = 0, we 

obtain 

5(~+1)x G = E a i  5(r+1) x F~, 

so, by the definition of F (r+l) in Step 1, G r F (r+l). This establishes the claim. 

We may therefore define 

B (~) = {F E F(r): 5(r)x g ELr}  \ F (~+D. 

Then it is clear that 5(~) (F (r+~) U B (~)) is a basis of H~, establishing (7). 

STEP 3: Show that F (~+1) and F (~+1) U B (~) are subcomplexes of F (r). 

To show that  F (~+1) is a subcomplex, suppose that G c F and G E F (~) - 
F(~+1). We must show that F ~ F (~+1). By the definition of F (~+1) in Step 1, we 

have that  5(~+1)x G r Mr+l, so equation (6) holds (with an index shift). Multiply 

(the index-shifted) equation (6) on the left by xP-G: 

"[-5( r-t'l)xF : E "}- a, 5(r+l)X F~U(F-(;) 

where F~ U (F - G) <L F as before. Hence ~(r+l)X F ~ Mr+l, so F r F (r§ 

Thus F (r+l) is a subcomplex. 

Similarly, to show that F (~+1) U B (~) is a subcomplex, suppose that G C F 

and G E F (r) - (F (r+l) U B(r)). We must show that  F r F (~+1) U B (r). By the 

definition of F (r+l) U B (r) in Step 2, we have that 5(~)x c ~ Lr, so equation (8) 

holds. Multiply equation (8) on the left by x f -C:  

-{-(~(r)XF "~- E "4- a, 5(~)x F~u(F-G) + 5(r+Dz 

where z = -{-xf-Gy E KF. Since F~ U (F - G) <L F as before, 5(r)x f ~ Lr and 

so F r F (r+l) U B (r). Thus F (~+1) U B (r) is a subcomplex. 

STEP 4: Show B (~) is an r-Betti set (for 0 < r < d). 

To be an r-Betti set, B (~) must count Z[r](r)/B[r](r), or, equivalently, 

dim(ker 5r+1/im 5r+1), with 6~+1 interpreted as acting on the domain C[r](F) = 

5(~)KF. (For simplicity, we are dropping all k subscripts in this step; all state- 

ments extend trivially to the finer grading by k.) Note also, as in Step 2, that  

the definition of F (r) ensures that 5(~)KF = (~(r)KF (r). 

Now, by (5), the definition of F (r), 

Ir(r+l)l = dim 6r+l(5(r)Kr) = dim(5(~)KF) - dim(ker 5r+1). 
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Similarly, by (7), the definition of B(,.), 

IF(,.+1) u B(,.)[ -- dim(6(,.)gr(,.))/6,.+t(6(~)gF (,.)) 
= dim((f( , .)gF)/6, .+t  (5(,.)KF) 

= dim(6(r)KF) - dim(im 6~+l)- 

Finally, then 

IB(~) I -- ]r (r+l) t:J B (,.) ] - IF (~+1) ] = dim(ker (f,.+1) - dim(im 6r+1) 

as desired. 

STEP 5: Verify the existence of ~?(~), relying upon Lemma 3.1. 

Let G be the directed graph whose vertices are X = F (~-1) and whose edges 

are the pairs (F, G) with F C G 6 F (,.-1) and [G - F[ = 1. Let V = KF.  Define 

O: F (,.-1) ~ K F  by 

O(F) = ~(~_l)X F. 

By (5), 0 = 5(,.-1) is injective on its domain KF  (,.-1) = KX.  Also define 

r K6(~_I)F (r-l) ~ KF 

by 

Finally, let 

and 

Z = F (~) 

Y = r( , . )  u B (,.-1). 

It remains to show that  conditions 1 through 4 of Lemma 3.1 are satisfied. 

Condition 2 of the lemma is obvious because r = 6,. is a coboundary operator. 

To verify condition 1 of the lemma, let F 6 r (,.-1). Define 

S F = { G E F ( , . - t ) : F c G ,  [ G - F [  = 1}. 

Because r = 6,. is a coboundary operator, it follows that 

r =6,. (5(r_l)x F) = +5(,._,)(6,.x F) 

=• E a c x  a ( w h e r e a c E K )  
GESF 

: 

G68p 

: E +aGOG, 
GESF 
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and so 

r  E spanK{OG: (F,G) is an edge of G}. 

To verify condition 3 of the lemma, we need to show that 

r = &~(~_,)F (~) -: 5(~)I '(~) 

is a basis for 

r : (r-'' 

=K6(~)F (~-:). 

But by (5), 6(r)F (~) is a basis for K6(~)F D Kdi(~)FCr-1), and (~(~)F (r) C_ 

K6(~)F (~-:) (since F (~) C_ F(~-I)), so (~F (~) is a basis of K6(~)F (~-:). 

Finally, to verify condition 4 of the lemma, note that 

O(Y) : (~(r--1)(F(r) ill B (r-l)) 

is a basis for 

K6(~_ :) r (~- :)/K~(~) r (~- t) =Kti(r_ 1)r (r-  t)/3~K6(~_ l)r (~- 1) 

=KOX/r 

by (7), the definition of B (~-:). 1 

We now use Theorem 3.2 to prove our main result, Corollary 3.5, which differs 

from Conjecture 1.2 only in that rank r Boolean intervals are replaced by rank r 

Boolean trees, defined as follows. 

Definition 3.3: A B o o l e a n  t r e e  o f  r a n k  i is a subposet of a poset P,  with a 

unique minimal element, defined recursively as follows. Any element x E P is a 

Boolean tree of rank 0; clearly x is the minimal element. Now assume Tl and 7"2 

are two disjoint Boolean trees of rank (i - 1), with minimal elements rl  and r2, 

respectively, such that r2 covers rl  in P. Then T1 U 7"2 is a Boolean tree of rank 

i; clearly r :  is its unique minimal element. 

Here, a subposet of poset P is a poset whose elements are a subset of the 

elements of P,  and whose order relations are a subset of the order relations of P. 

All Boolean trees of the same rank are isomorphic as posets. 
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Example 3.4: The first four Boolean trees are shown below. 

rank 0 rank 1 rank 2 rank 3 

Remark: It  is easy to see that  a Boolean tree of rank i is isomorphic to a 

spanning tree of a Boolean algebra of rank i. 

COROLLARY 3.5: Let F be a simplicial complex. Then there is a decomposition 

o fF  into disjoint Boolean trees such that the number of Boolean trees of rank r 

with a (k - r)-dimensional minimal element is/3k[r](F), where ~k[r](F) denotes 

the rth iterated (k-dimensional) Betti number ofF. 

Proo~ The minimal elements of the Boolean trees of rank r in this decompo- 

sition will be the faces in B(~); since each B (~) is an r-Betti  set, there will be 

/~k[r](F) trees of rank r with a ( k -  r)-dimensional minimal element. We use the 

following recursive algorithm to construct the trees. 

At every step of the algorithm, F will be decomposed into disjoint Boolean 

trees, but each step will combine some trees from the previous step to make 

larger trees. At the end of step r, tile Boolean trees will have rank at most r, 

the minimal elements of the trees of rank r will be all the faces in F (~), and, for 

0 < i < r - 1, the minimal elements of the trees of rank i will be all the faces in 
B(i). 

STEP 0: Every face F in P = F (~ forms its own Boolean tree of rank 0. 

STEP r + 1 (r _> 0): We may assume, r steps having been completed, that  the 

minimal elements of the Boolean trees of rank r in the decomposition of F are 

all the faces in F (~). By Theorem 3.2, F (~) = F (~+1) ~5 B (~) U ~(r+l),  and, for 

every F C F (~+1), there is an r/(r+l)(F) E ~(~+1) covering it in F. For every 

(F, r/(~+l)(F)) pair, combine the trees of rank r whose minimal elements are F 

and r/(~+I)(F), respectively, into a new tree of rank r + 1; its minimal element is 

F.  This leaves among the Boolean trees of rank r precisely those whose minimal 

element is in B (~), and completes step r + 1. 

After the (d + 1)st step, then, there will be no trees of rank greater than d in 

the decomposition (since p(d+l) = 0), and, for 0 < i < d, the minimal elements 

of the Boolean trees of rank i will be tile faces in B (i), as desired. II 
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4. Shifting 

In this section, we show how Conjecture 1.2 is a special case of Conjecture 1.1 

(Corollary 4.10). The first step (Theorem 4.7) is to show that a shifted complex 

has a canonical shifting-preserving collapse sequence. The next step (Corol- 

lary 4.9) is to show that for an algebraically shifted complex A(F), the intervals 

of this sequence are indexed by the iterated Betti numbers of ['. 

Along the way, we define shifted complex, shifting-preserving collapse sequence, 

and algebraic shifting. 

Definition 4.1: If S =  {it < " - < i k }  a n d T - - { j l  < ' "  < jk}  are k-subsets of 

integers, then S _<p T under the c o m p o n e n t w i s e  pa r t i a l  o rde r  if ip _< jp for 

all p. 

Definition 4.2: A collection (J of k-subsets is sh i f ted  if S _<p T and T E C 

together imply that S E C. A simplicial complex A is sh i f ted  if Ak is shifted for 

every k. 

Definition 4.3 (Kalai [Ka, Section 4]): A face R of a simplicial complex A is 

called free if it is included in a unique facet F. The empty set is a free face of 

A if and only if A is a simplex. (This definition is slightly nonstandard in that 

we are considering facets themselves to be free.) A collapse s tep  is the deletion 

from A of a free face and all faces containing it (i.e., the deletion of the interval 

[R, F]). Performing a collapse step may create new facets. A collapse sequence  

is a sequence of collapse steps that reduce A to the empty simplicial complex. 

A sh i f t ing -p rese rv ing  collapse sequence  is a collapse sequence that leaves a 

shifted complex at every step. 

PROPOSITION 4.4: I f  the interval removed at the ith collapse step of a collapse 
sequence of a simplicial complex A is JR,, F~], then ~J~[R,, Fi] partitions A. 

Proof: Because the sequence of deletions of intervals reduces A to the empty 

complex, every face of A is in one of the intervals. To show that the intervals 

do not overlap, assume otherwise; let G E [Ri, Fi] N [Rj, Fj], with i r j ,  say 

i < j .  Then Ri C_ G C_ Fa, which contradicts Ri being free when [Ri, Fi] is being 

removed, since [Rj, Fj] is not removed until after [Ri, Fi] is. II 

In order to describe the canonical shifting-preserving collapse sequence in 

Theorem 4.7, we need the following two definitions. Recall that [r] = {1 , . . . ,  r} 

if r _> 1, and that [0] = 0. 
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Definition 4.5: Let F be a set of positive integers. Define 

init(F) = min{r: r r F} - 1. 

Equivalently, 

init(F) = max{r: [r] C_ F}. 

In other words, init(F) measures the largest "initial segment" in F,  and is 0 if 

there is no initial segment (i.e., 1 ~' F).  

Definition 4.6: I f S  = {il < . . .  < ik} a n d T  = {jl < "'" < jm} are sets of 

integers, then S ~L T under the l ex icograph ic  o r d e r  if there is a q such that 

ip = jp for p <_ q, and either k = q or iq+t < jq+t. 

Lexicographic order is a total order on all non-empty sets of integers. This 

definition is more general than the usual one, in that the two sets being compared 

need not be the same size. 

THEOREM 4.7: I f  A is a shifted simplicial complex, then it has a shifting- 

preserving collapse sequence whose corresponding decomposition into disjoint 

Boolean intervals A = U~=I [Ri, Fi] satisfies 

(9) #{i:  dimFi = k, dimP~ = k - r} = 

#(facets  F E A: d i m F  = k, init(F) =- r}. 

Proof: For every facet F,  let 

RF := F -  [ ini t (F)] .  

Label the facets of A in the opposite of lexicographic order, so 

F1 >L F2 >L "" >L Ft 

are all the facets of A. We then specify the collapse sequence by defining the 

Boolean intervals removed in each collapse step of the collapse sequence to be, 

in order, 

(10) [RF,, F1] , . . . ,  [R~,, F~]. 

If (10) is a shifting-preserving collapse sequence, then it is immediate that it 

satisfies (9). It only remains to show that it is a shifting-preserving collapse 

sequence. 
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We first show that  the removal of all the intervals in (10) leaves the empty 

complex, or, equivalently, that every face of A is in some [RE, F]. To that end, 

we first define, for any face T E A, 

rT := max{r: T U [r] E A}. 

Clearly, 

(II) T - [rr] c T c T U [rr]. 

By definition of rT, we have T U [rT] U {rT + 1} = T U [rT + 1] r A. Because A 

is shifted, then, T U [rT] U {v} r A for any v >_ rT- f  1. Of course, if v <_ rT, then 

v E [rT] C_ T U [rT]. Therefore, we cannot add any new vertex to T U [rT], and it 

is thus a facet. 

Let F = TU [rT]. Then F U  {rT + 1} = TU [rT] U {rT + 1}, which is, as above, 

not in A, so rT + 1 ~. F. On the other hand, [rT] C F, so init(F) = rT, and (11) 

may be rewritten as 

F - init(F) c_ T C_ F. 

This shows that  T is in one of the intervals of (10), as desired. 

An easy corollary is that no new facets are created as the intervals in (10) are 

removed. For if T is any face of A other than a facet, there is some facet F 

such that RE C T C F.  Then, since F is not removed at least until T is, T 

is never a facet. We may therefore unambiguously refer to "facets" from now 

on, without regard to how many of the intervals of (10) have been removed. A 

further consequence is that if F is a facet, then [RE, F] is removed when G --<L F 

for all remaining facets G. 

Next we show that  when facet F is removed, RE is free. Let G be a facet 

containing RF; we must show that G = F. Because G --<L F, either G c_ F 

or init(G) _> init(F); as G is a facet, it must be the latter case. Then F = 

[init(F)] U RE C_ [init(G)] U RE C G. Since F is a facet, G must equal F.  We 

conclude that (10) is a collapse sequence. 

Finally, to show that (10) is shifting-preserving, we must show that, when 

[RE, F] is about to be removed, if S <p  T are two faces still remaining in the 

complex and S E [RE, F], then T e [RE, F] as well. Now, S = RF U I for some 

I C_ [rE]. Let T'  be the last IRFI elements o f T  (i.e., i f T  = {v: < - '-  < vt}, 
then T' = {vt-IRpl+:, vt-IR~.l+2,..., vt}). The set of the last IRFI elements of 

F = init(F) U RF is RF, so the definition of componentwise partial order _~p 
ensures that RE <_p T I. Because A is shifted, then, rT, <_ rnF. 
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Let G = T' tJ rT,, a facet. Because F is about to be removed, G _<L F,  so 

rT, = rG ~_ rF  = rRF.  Thus r T ,  : rRF,  and G <_L F then implies T' <_L R E .  

But RE <_p T ~ then implies T' = RE. Therefore T D_ RE, and then T E [RF, El, 
since RE is free. | 

The following definition relies upon the generic basis { f l , . . . , f ~ }  of 

Definition 2.2. 

Definition 4.8: Let F be a simplicial complex. Define f s  := fil A .. .  A f i ,  for 

S = { i l  < " ' "  < i k }  (and set f0 = 1). Define 

f ( r )  := {S c_ In]: is r span{jR: IRI = ISl, R <L S}} 

to be the a lgebra ica l ly  sh i f ted  co mp lex  obtained from F. 

The k-subsets of A(F) can be chosen by listing all the k-subsets of [n] in 

lexicographic order and omitting those that are in the span of earlier subsets on 

the list, modulo Ir and with respect to the f-basis. As its name implies, A(F) is 

a shifted simplicial complex. For a more complete discussion of algebraic shifting, 

see [BK]. 

COROLLARY 4.9: Let F be a simplicial complex, and A(F) its algebraically 

shifted complex. Then A(F) has a shifting-preserving collapse sequence whose 
corresponding decomposition into disjoint Boolean intervals satisfies 

(12) #{i:  dimFi = k, d imR,  = k -  r} = flk[r](F). 

Proof." Because A(F) is shifted, it has a shifting-preserving collapse sequence 
$ ' 

whose corresponding decomposition into disjoint Boolean intervals .~i=l[P~, Fi] 

satisfies (9), with A = A(F). But [DR, Theorem 4.1] states that 

(13) #{facets F e A(F): d i m F  = k, init(F) = r)  = flk[r](F). 

The corollary then follows immediately. | 

COROLLARY 4.10: Conjecture 1.1 implies Conjecture 1.2. 

t Proof: Let F be a simplicial complex, and let U~=I[R/, F~] be the decomposition 

of its algebraically shifted complex A(F) into disjoint Boolean intervals of A(F) 

satisfying (12), guaranteed to exist by Corollary 4.9. If Conjecture 1.1 is true, 

then there is a decomposition of F into disjoint Boolean intervals U~=I[A~, B,] 

such that 

#{i :  d imB,  = k, dimA~ = k -  r} = #{i:  dimF, = k, dimR~ = k -  r}. 
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But by (12), 

#{i: dimF, = k,dimPq = k - r} = f~[r](F). 

These two equations prove the corollary. I 

Existing results in the literature suffice to quickly prove almost all of 
Theorem 4.7 and Corollary 4.9, namely that A(F) has a collapse sequence, though 

not necessarily a shifting-preserving collapse sequence, whose decomposition sat- 

isfies (12). This relies upon the concepts of the h-triangle, a doubly-indexed 

nonpure generalization of the h-vector, and shellability of nonpure complexes, 

both due to BjSrner and Wachs [BWl]. A sketch of a proof along these lines is 

as follows: 

Because A(F) is shifted, it is shellable [BW2, Corollary 11.4], and therefore 
has a collapse sequence indexed by its h-triangle [DR, Lem.ma 5.5]. This is the 

same collapse sequence that Theorem 4.7 shows to be shifting-preserving. Now, 
the entries of the h-triangle of A(F) equal the iterated Betti numbers of F [DR, 

Theorem 5.4]. Thus, A(F) has a shifting-preserving collapse sequence indexed 

by the iterated Betti numbers of F, which proves Corollary 4.9. 

We proved Theorem 4.7 and Corollary 4.9 directly, instead of adding the proof 

that the collapse sequence is shifting-preserving to the above sketch, because it 

is easier than introducing the definitions of shellability and the h-triangle. 

5. Cohen-Macaulay  complexes 

In this section, we show how Conjecture 1.2 and Corollary 3.5 apply to Cohen- 
Macaulay simplicial complexes and a conjecture due (separately) to Garsia [Ga, 
Remark 5.2] and Stanley [Stl, p. 149]. For background on Cohen-Macaulayness, 
see, e.g., [St3]. We will need to note only that Cohen-Macaulay complexes are 
pure, and the following result of Kalai's [Ka], recently reproved and generalized by 
Aramova and Herzog [AH], relating Cohen-Macaulayness and algebraic shifting. 

PROPOSITION 5.1 (Kalai): If  F is a simplicial complex, then F is Cohen- 
Macaulay if and only if its algebraically shifted complex A(F) is pure. 

CONJECTURE 5.2 (Garsia, Stanley): Let F be a Cohen-Macaulay simplicial 

complex. Then there is a decomposition of F into disjoint Boolean intervals, 

whose tops are facets. 

THEOREM 5.3: Conjecture 1.2 implies Conjecture 5.2. 
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Proof: Let F be a d-dimensional Cohen-Macaulay simplicial complex. By 

Proposition 5.1, A(r') is thus a pure d-dimensional complex. By equation (13), 

then, for k < d, 

f~k[r]([') = #{facets F �9 A(F): d i r e r  = k, init(F) = r} 

0~ 

since all of the facets of A(F) are d-dimensional. If Conjecture 1.2 were true, then 
t A F could be partitioned into disjoint Boolean intervals F = Ui=~[ ,, B,], where 

none of the Bi has dimension k < d. In other words, F could be partitioned into 

disjoint Boolean intervals, whose tops are facets. | 

THEOREM 5.4: / f  F is a Cohen-Macaulay simplicial complex, then F can be 

partitioned into Boolean trees, whose tops are facets. 

Proof: The proof is entirely analogous to that of Theorem 5.3, except using 

Corollary 3.5 and Boolean trees instead of Conjecture 1.2 and Boolean intervals. 
| 
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